Sparse Functional Principal Component Analysis in High Dimensions

نویسندگان

چکیده

Functional principal component analysis (FPCA) is a fundamental tool and has attracted increasing attention in recent decades, while existing methods are restricted to data with single or finite number of random functions (much smaller than the sample size $n$). In this work, we focus on high-dimensional functional processes where $p$ comparable to, even much larger $n$. Such ubiquitous various fields such as neuroimaging analysis, cannot be properly modeled by methods. We propose new algorithm, called sparse FPCA, which able model eigenfunctions effectively under sensible sparsity regimes. While assumptions standard multivariate statistics, they have not been investigated complex context only large, but also each variable itself an intrinsically infinite-dimensional process. The structure motivates thresholding rule that easy compute without nonparametric smoothing exploiting relationship between univariate orthonormal basis expansions Kahunen-Lo\`eve (K-L) representations. investigate theoretical properties resulting estimators, illustrate performance simulated real examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel sparse functional principal component analysis.

We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we con...

متن کامل

Sparse Principal Component Analysis

Principal component analysis (PCA) is widely used in data processing and dimensionality reduction. However, PCA suffers from the fact that each principal component is a linear combination of all the original variables, thus it is often difficult to interpret the results. We introduce a new method called sparse principal component analysis (SPCA) using the lasso (elastic net) to produce modified...

متن کامل

Joint sparse principal component analysis

Principal component analysis (PCA) is widely used in dimensionality reduction. A lot of variants of PCA have been proposed to improve the robustness of the algorithm. However, the existing methods either cannot select the useful features consistently or is still sensitive to outliers, which will depress their performance of classification accuracy. In this paper, a novel approach called joint s...

متن کامل

Sparse Kernel Principal Component Analysis

'Kernel' principal component analysis (PCA) is an elegant nonlinear generalisation of the popular linear data analysis method, where a kernel function implicitly defines a nonlinear transformation into a feature space wherein standard PCA is performed. Unfortunately, the technique is not 'sparse', since the components thus obtained are expressed in terms of kernels associated with every trainin...

متن کامل

Sparse Probabilistic Principal Component Analysis

Principal component analysis (PCA) is a popular dimensionality reduction algorithm. However, it is not easy to interpret which of the original features are important based on the principal components. Recent methods improve interpretability by sparsifying PCA through adding an L1 regularizer. In this paper, we introduce a probabilistic formulation for sparse PCA. By presenting sparse PCA as a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistica Sinica

سال: 2023

ISSN: ['1017-0405', '1996-8507']

DOI: https://doi.org/10.5705/ss.202020.0445